Integrating time into majority-rule sorting models

Application to the cyber-defense context

Arthur VALKO Director : Patrick Meyer Supervisors : Alexandru-Liviu Olteanu, David Brosset

26 septembre 2018

Sommaire

1 Context

- Cyber-defence and naval environment
- Decision problem
- Operational constraints
- MCDA choice

2 Time integration

- Hierarchical model
- Learning Process
- Experimentation
- Concluding remarks and future work

Cyber-defence in naval context

Naval Systems

Today's ships are mainly controlled by automatons and information systems.

Information system are everywhere in naval equipment both at sea and in harbours.

This equipment have lots of **connections** with other information systems inside and outside.

Potentially very long life.

Risk

Like every information system they can be hacked and need cyber-defence.

Expansion of connectivity increases the risk of cyber attacks.

PhD topic :

Decision aiding to help selecting a reaction to a cyber attack event on military ships

Problem

How to help a naval system administrator to make good decision to restore his ship's systems?

Specificity of cyber-security context

- Propagation of the attack in the connected systems.
- Effect of the attack on the system varies in time.
- Defence actions may take time.
- $\blacksquare \rightarrow$ Answers must take into account time.

Specificity of naval context

- Physical (weather, position, ...) context of the ship has to be considered.
- Mission constraints and needs.
- "Distance" between the decision maker (captain of the ship) and the system experts.

Context
00000
Decision problem

MCDA & cyber-defense : ship example

MCDA & cyber-defense : ship example

Dashboard for the decision maker

Operational constraints

It is difficult for a decision maker in cyber-security to **evaluate** recovery actions He / she does not necessarily look for the "best" action, but rather wishes to select among "**good**" ones

 \rightarrow he / she wishes to have the final word !

\rightarrow sorting algorithm

Evaluation scales of the criteria are **heterogeneous** and have a strong meaning for the decision maker

He / she (cyber defender) does not trust information systems (black boxes)

 \rightarrow high readability of the decision recommendation required

 \rightarrow outranking method

MR-Sort

- Sorting outranking model
- Various extensions possible to increase expressiveness (vetos, dictators, ...)
- Output easy to read and to explain
- Indirect learning process which is user friendly for the decision maker (from assignment examples)

Further need

Consequences of actions might vary with time on the various criteria

Further need

Consequences of actions might vary with time on the various criteria

How to integrate time into MR-Sort models?

Time integration

1 Context

- Cyber-defence and naval environment
- Decision problem
- Operational constraints
- MCDA choice

2 Time integration

- Hierarchical model
- Learning Process
- Experimentation
- Concluding remarks and future work

Time integration

Multiple options :

Increase the number of criteria

- One "time"-criterion per time step
- Loss of readability for DMs
- Difficulty of learning process for DMs

Time aggregation

Loss of information (intra- and inter-criterion)

Our proposal : hierarchical approach

- Time structure conservation
- Better readability for DMs
- Easier learning for DMs

Hierarchical model

Learning process

Learning process

Learning algorithm questions

Complexity

Computation time for the learning process compared to classical MR-Sort

Elicitation

- Size of assignment examples to determine a good-enough representation of the decision maker's preferences
- Expressiveness of hierarchical MR-Sort model versus a classical one taking into account all criteria and time steps at once.

Experimentation

Test platform

Ongoing tests :

- Learning time as a function of problem size
- Inferred model quality as a function of problem size
- Cross-analysis of classical and hierarchical MR-Sort models

Concluding remarks and future work

Hierarchical model :

- Adds a time component into the decision-making process.
- Adds an additional structural layer to the analysis of the decision problem.

Apply the model in a real-world case :

- Ship protection system
- Cyber-defence data hypervisor, dashboard management
- Security Operational Centre

Future work :

- Meta-heuristic learning method
- Automatic explanation of recommendations

Thank you for your attention. Any questions?

