Decision Deck Workshop

Robust efficiency methods on diviz and other news from PUT

Miłosz Kadziński Anna Labijak

Institute of Computing Science

Poznan University of Technology (PUT) Poznan, Poland

Data Envelopment Analysis - Running Example

Essence of Data Envelopment Analysis

Miłosz Kadziński

Lisbon, September 26, 2018

Value-based Efficiency Analysis

- Dias et al., Journal Oper Res Soc, 2006-2013
- Preference information: linear weight constraints
- Preference model: additive value functions

 DMU_0 is efficient iff it attains the greatest comprehensive value for some value function

A ►

∃ → < ∃ →</p>

Value-based Efficiency Analysis - Criticism

- Dias et al., Journal Oper Res Soc, 2006-2013
- DMU₀ is efficient iff it attains the greatest comprehensive value for some value function
- analysis of most favourable weights (not unique)
- extremely small share of weights is analyzed (others neglected while being equally desirable)
- results **sensitive** to removal or inclusion of a single DMU
- indication of efficient/inefficent units (DEA does not discriminate among them)
- no imprecision in the specification of inputs/outputs and models

- 4 昂 ト 4 臣 ト 4 臣 ト

Value-based Efficiency Analysis - Extensions

- No assumptions with respect to the production possiblities beyond the set of DMUs under consideration
- Results derived from pairwise comparisons are less sensitive to outliers
- Three perspectives for robustness analysis: Efficiency scores
 - Pairwise efficiency preference relation
- Efficiency ranks

R

U

1

7

space of allowed marginal value functions

Robustness analysis with Linear Programming

- Determine in an exact way results confirmed for all, some, the most and the least advantageous scenario
- Often not conclusive enough (what is certain is very rare, the space between the extreme cases if often large)
- Robustness analysis with Monte Carlo simulation
 - Apply Monte Carlo simulation (e.g., Hit-And-Run)
 to provide stochastic indices
 - How probable are particular results / what is their distribution
 - · Stochastic indices estimated through simulation are not exact

MC

Robustness Analysis - Efficiency scores

Robustness Analysis - Pairwise Efficiency Relation

Robustness Analysis - Efficiency Ranks

Robust Value-based Efficiency Analysis on diviz

③ TIME FOR DEMO

Miłosz Kadziński Lisbon, September 26, 2018

個 と く ヨ と く ヨ と

Data Envelopment Analysis on diviz

Action required from D2: hierarchy in XMCDA

▲ 同 ▶ | ▲ 臣 ▶

Diviz Workflows as Part of a Scientific Paper

Omega Volume 67, March 2017, Pages 1-18

Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports \Rightarrow

Miłosz Kadziński 🖄 🖾, Anna Labijak 🖾, Małgorzata Napieraj 🖾

Download links

- DEAPolishAirports.dvz for results without considering weight constraints;
- DEAPolishAirportsWithConstraints.dvz for results when considering weight constraints;
- DEAPolishAirportsWithoutOutlier.dvz for results when considering the set of airports without outlier (WAW).

Click here for a detailed description on how to import the workflow into diviz.

イロト イヨト イヨト イヨト

PUT's Next Steps related to Decision Deck

- Target non-European researchers: DEMATEL, VIKOR, BWM, etc.
- Advance MCDA R package with basic ELECTRE and PROMETHEE
- Comparative measures for ranking and sorting problems
- Clean up ordinal regression methods
- Graphical modules (rankings' comparison, choice problem (kernel), etc.)

